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ABSTRACT: This work is on non parametric approach to evaluating Cumulative Sum (CUSUM) or the 

Exponentially Weighted Moving Average (EWMA) control limits for a given data set, where the control limits 

are determined by the conditional distribution of the underlying data set. We applied the bootstrap method to 

evaluate the required control limits, detect the in – control and the out – of – control of the distribution, without 

rigid assumptions like the normality condition for the Statistical process control to be distributed. 
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I. INTRODUCTION 
 Statistical quality control is important to all human endeavours. It makes uses of available data to elicit 

the required best decision for utmost profit. The theories and methods of Statistical Process Control (SPC) have 

been developed from industrial statistics roots, such as quality specifications. In modern times, while quality 

enhancement still remains a major field of applications like in healthcare monitoring [Sterner et al (1999)], 

detecting of genetic mutation [Krawezak et al (1999)], credit and financial fraud detecting [Bolton and Hand 

(2002)] to mention but a few. It has a wider range of applications.  However, in this application, process 

distributions are often multimodal, skew or heavy tailed. So, the assumption of normality may not be apt in such 

circumstances. This work proposed bootstrap nonparametric approach to handle such cases.  

 According to Chatterjee and Qiu (2008), the SPC may be described as follows; A sequence of random 

variables {𝑋𝑛 ,𝑛 ≥ 1} on the real line is observed, such that 𝑋1,… ,𝑋𝑡0 follows a given distribution F (called an 

“in – control” distribution) and 𝑋𝑡0+1,𝑋𝑡0+2,… follows another distribution G (called an “out – of – control’’ 

distribution), where 𝐹 ≠ 𝐺. The major objective of SPC techniques is to detect such distribution F and G. When 

a shift in the mean of F is a major concern, the minimax sequential probability ratio test known as “cumulative 

sum control chart” (CUSUM chart hereafter) is the dominant technique for detecting such a shift, see Page 

(1954) and Van Dobben (1968). In other to detect the upward shift, the CUSUM 𝐶𝑛  is defined by 𝐶0 = 0 and  

  𝐶𝑛 = max⁡(𝐶𝑛−1 + 𝑋𝑛−𝑘 , 0) for 𝑛 ≥ 1                                              (1.1) 

Where 𝑘 ≥ 0 is a pre-specified allowance constant. The process is stated to be out – of – control, if 𝐶𝑛 > ℎ, 

where the control limit  is determined by setting in – control “average run length” (ARL) at a certain nominal 

level and the in – control ARL is defined to be the expected time to signal under F. That is  

                  (1.2) 

The probability of Type I error at a specific level in the hypothesis testing situation, with null hypothesis being 

that the process is in control is defined. If   is the amount of shift in the mean from F to G, then according to 

Reynold (1975), we can choose  from equation (1.1) under certain regularity conditions for it to be 

optimal. Similarly, the CUSUMs exist for detecting downward shifts, two – sided shifts in mean or shift in 

variance – see Hawkins and Olwell (1998), Liu and Reynolds (1999). 

 The issue with the conventional CUSUM is its sensitivity to the assumption that both F and G be 

normal distributions with known in – control parameters. Resultant distributions from either F or G maybe left 

or right skewed, whether it is of heavy tailed, bimodal or multimodal. The CUSUM usually show two kinds of 

behaviour. It may have either a short or long actual in – control ARL, compared to the nominal in – control ARL 

value. When the actual in – control ARL value is smaller than , the CUSUM would be too sensitive to 

random noise, resulting in a large number of false alarms or out – of – control signals. The closeness of the 

actual in – control ARL value to  is the robustness of this CUSUM to the various assumptions behind it. 

However, when explicit knowledge of F or G is not known or that distributions are not normally distributed, 

then, we need appropriate technique to handle this type of situation. Here, the bootstrap method may be used to 

get the control limit h, so that the actual in – control ARL value matches the nominal value ARLO. Since over 

thirty (30) years now, the bootstrap techniques have been successfully used in obtaining highly accurate 



Bootstrap Approach Control Limit for Statistical Quality Control. 

www.ijesi.org                                                        29 | P a g e  

confidence intervals, estimates of the asymptotic variance, moments and probabilities, calibrations of different 

Statistics and so forth. In this study, we shall adopt the bootstrap technique to Statistical Quality Control (SQC).  

ARL is a performance measure that is widely used to evaluate control charts. In this present work, the 

in – control ARL ( ) will be used to compare the performance of the control charts. 

In classical Case, the upper control limit(UCL) and the lower control limit(LCL) of the EWMA  are given below 

in equation 1.3 
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Where  are the design parameters of the EWMA chart. The EWMA control chart can be viewed as a 

weighted average of all the past and present observations, the distribution can be reasonably approximated by a 

normal distribution as a result of central limit theorem. But the bootstrap approach is not dependent on the type 

or condition of normality for data been considered, which are required for the CUSUM and EWMA control 

limits. 

 

II. LITERATURE REVIEW 
 The need to avoid human and material errors, underscore the search for efficient methods to serve 

human needs. Statistical Process Control (SPC) and Statistical Quality Control (SQC) had been applied to these 

challenges, see Bolton and Hand (2002) and Good (2000). These researchers including Meulbrock (1992) used 

this approach to empirically analysis illegal insider trading in a financial deal (data). It must be noted that Bolton 

and Hand (2002) in their review of Statistical fraud detection studies, acknowledges not just the control limits 

for decision making, available methods for detecting changes in the underlying data distributions, they also 

review discrete and continuous data inspection schemes like the control charts for monitoring the mean and 

variance of autocorrelated processes, the Exponentially Weighted Moving Average (EWMA) types of control 

charts with varying time control limits with fast initial response. They were of the view that no simple basic 

method would do for comprehensive and efficient solutions to real data problem. Therefore, suggested that in 

addition to parametric approaches, non parametric approach could also be explored in this regard. 

 Chakraborti et al (2001) give an overview of how non parametric control charts could be applied to 

statistical quality control. Qiu and Hawkins (2001) used the rank based (non parametric method) CUSUM 

procedure for detecting shifts limit for decision making. Considering the efficiency of the bootstrap method as 

used by Bajgier (1992) to construct limits on control charts, following Wu and Wang (1996) and Good (2000) 

support for this approach due to its non parametric approach with less bias and variance structure, we therefore 

apply this resampling technique, with some modifications to suit not just the control limits but also to the 

resulting underlying density distribution of the data. 

 In 1979, Efron introduced this resampling technique called the bootstrap, since then a lot of studies and 

application had been done on this technique, particularly with the advent power and speed of the modern 

computer. See Efron (1979), Efron and Tibshirani (1993), Shao and Tu (1995), Good (2000) and Ogbeide and 

Ogbonmwan (2008). 

 Generally, in the bootstrap method, we draw repeated samples with replacement from observed data 

and estimate the sample distribution of a related statistic of interest using these samples. It is implemented in an 

algorithm. It does not require the classical assumptions like the normality for it to operate. According to Efron 

and Tibshirani (1993), this method works under less stringent assumption or no assumptions. Resampling 

techniques for SPC are of considerable recent interest in the review literature. In the literature, efforts have been 

made to remove certain assumptions of the conventional CUSUM. Hawkins and Olwell (1998), suggested using 

the self – stating CUSUM when both F and G are normal but the in – control distribution parameters are 

unknown. Some non – parametric CUSUMs have been proposed, see Chakraborti et al (2001) for one – 

dimensional methods, Qiu (2008) and Qiu and Hawkins (2001, 2005) for the multivariate non – parametric 

CUSUMs. Wu and Wang (1996) and Wood et al (1999) design bootstrap – based control charts, though not for 

CUSUM. Steiner et al (1999) suggested using time varying control limits in the form of Exponentially Weighted 

Moving Average (EWMA) control chart. However, our bootstrap based SPC procedure is an attempt to be 

flexible on the choice of any assumption for F or G, particularly when we do even know them or even with the 

in – control mean  and in- control standard deviation  . 
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 Basically, our method depends on the data set resampled to generate statistic of interest. This helps us 

to overcome the situation when the classical assumptions of F is unknown or misspecified, the results will not be 

reliable. We use the bootstrap approach for approximating the distribution of the CUSUM statistic and obtain a 

sequence of control limits. This procedure is distribution free. Also the difference between our method and that 

of Chatterjee and Qiu (2009) is that while they worked on the bootstrap CUSUM for detecting upward shift in 

the location of the parameter F. We modify and apply ours to the two – sided shifts CUSUM distribution. As in 

the literature, we state the statistics to facilitate our study. Let  

                                                 

(2.1) 

Where  is the time elapsed after the last CUSUM  was zero. According to Qiu (2008), we shall call  

the sprint length of the data. 

Polansky (2005) provided a general framework on constructing control charts for both univariate and 

multivariate situation. We observed that univariate control charts have been devised to monitor the quality of a 

single process variable. It can contextually be extend to several variables. In particular, some studies on non 

parametric control charts favours the use of the bootstrap approach. This is due to the fact that it has the proven 

capabilities to effectively manage process data without making assumptions about their distribution. In Bajgier 

(1992), when he introduced a univariate control chart whose lower and upper control limits were estimated by 

the bootstrap technique. The Bajgier’s control charts tend to generate a wide gap between the lower and upper 

control limits when the in – control process is unstable. This observation where also noted in Seppala et al 

(1995) when they proposed a sub group bootstrap chart to compensate for the limitation of Bajgier’s control 

charts with too much ARL. The sub group bootstrap chart uses residuals which are the differences between the 

mean of  sub group obtained by a bootstrap technique and each observation in the  sub group. The lower 

and upper control limits are determined by adding the mean of the residuals to the grand mean. 

Liu and Tang (1996) proposed the bootstrap control chart to monitor both independent and dependent 

observations in process control situation. Jones and Woodall (1998) compared the performance of the three 

above approaches control charts in the non normal situation and found that they did not perform significantly 

better than the traditional  chart in terms of the in – control average run length (ARLo). Suggesting a need for 

their enhancement or modification for better performance, this motivates our study. Recently, Lio and Park 

(2008) proposed a bootstrap control chart based on the Birnbaum – Saunder distribution. This chart fits tensile 

strength and breaking stress data. This approach uses a parametric bootstrap technique to establish control limit. 

They showed that their parametric bootstrap method can accurately estimate the control limits for the Birnbaum 

– Saunder’s percentiles. Parametric assumption here could be costly. However, Park (2009) proposed the 

median control charts whose control limits were determined by establishing the variance of the sample median 

via the bootstrap technique. 

The Exponentially Weighted Moving Average (EWMA) control charting procedure is an alternative to 

the standard control chart and the cumulative sum (CUSUM) control chart. Since most real life data are 

multivariate in nature, another possible approach to monitor this data would be to use a multivariate distribution 

free control chart, such as the EWMA. For details, see Crowder (1987) and Edokpa et al (2009). 

 In this paper, we present a proposed bootstrap non parametric approach control charts as an alternative 

means of establishing the control limits in the univariate situation when the observed process may not even be 

normally distributed. The control limit of the bootstrap is based on the correlated/adjusted percentile statistic 

with a view to enhancing ARL. 

 

III. METHODOLOGY 
 A modified bootstrap technique for statistical process control is presented for the situation under 

consideration when particularly the assumption of normality does not hold. The modified algorithm is as 

follows: 

1. Compute the T statistic with  observations from the in – control data set using (1.1) that is from 

observed data of the estimate of F. 

2. Let  be a set of T values from the bootstrap samples  randomly 

drawn from the initial T statistic with replacement. Where B is a large number say . 
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3. From the B bootstrap samples, estimate . Where  is the 

cumulative distribution function of  from the observed resampled data. Where  is a user – specified 

value  with the range between 0 and 1. 

4. Determine the control limit by taking an average of percentile values . 

Note that statistics other than the average like the median, variance, etc can be used. From the step 3 

above and the control limits (lower and upper limits). 

5. Use the establish control limit to obtain the distribution and monitor a new observation or the behavior 

of the observation. This is monitoring statistic of a new (other) observations that exceeds the upper and 

lower limits determined, which we shall declare as out of control from the ARL. 

 

IV. APPLICATION AND DATA ANALYSIS 
Given that Brown bean were grown under controlled conditions for a period of 10 weeks after 

germination, no measurement of mean height was recorded at the end of week one but the mean height recorded 

at the end of subsequent weeks. Source: Attwood and Dyer (1995,p.161). See Appendix I.  the established mean 

growth of Bean is 13, this incidentally coincide with Osanaiye and Talabi (1989)), Appendix II. where k = 13, h 

= 11. Table I (extracted from British Standards 5703, Part 4) in Kemp (1962) and Goel and Wu (1971) is used as 

it is relevant (as used by We conduct a control limit to decide where the growth is undergrowth or overgrowth. 

Recall: with this data at ,  via goodness of fit test. This 

distribution can be modeled by a continuous uniform distribution and not a normal distribution. This affects the 

assumption of normality by the classical CUSUM or EWMA controls model development but not that of the 

Bootstrap method. 

We have below, illustration using the brown beans data. 

Table 1: CUSUM tabulation for brown beans growth data. 

Weeks 
       )( 1 kXd i

  

Week2 20 20 8 8 *8  

Week3 31 11 -2 6 0 

Week4 48 17 4 10 *6  

Week5 63 15 2 12 *12  

Week6 73 10 -3 9 0 

Week7 78 13 0 9 0 

Week8 101 13 0 9 0 

Week9 112 11 -2 7 0 

Week10 120 8 -6 -1 0 

 

Where . 

From table, the mean growth rate for brown Beans is 13, an out – of – control sign is given when the growth rate 

shifts upwards to an unexpected level. This can be seen at week2, week4 and week5. Week3, week6, week9 and 

week10 .At the same vein, when the mean growth rate is lower than the unexpected, such as in week7 and 

week8. We say that the mean growth rate is out-of-control. Below is the table of computed CUSUM, and 

Bootstrap (B=1000 and B=5000) mean, control limits, ARL and variances. 

Table 2:  Computed CUSUM, and Bootstrap (B=1000 and B=5000) for the Brown beans data. 

Approach 
    

  

CUSUM 12.5 15.9641 9.0359 6.9282 3.464 

Bootstrap 

B=1000 

13.333 16.6997 9.9669 6.7328 3.3664 

Bootstrap 

B=5000 

13.3232 16.6892 9.9572 6.7320 3.3660 

 

The bootstrap approach variance is less than the classical case and the mean of the Bootstrap is more closer to 

the  targeted mean of  than the CUSUM approach, see Kemp(1962) and Goel and Wu (1971).   Our 
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proposed Bootstrap approach without the assumption of normality of  F (of the data) as in the classical case and 

perform comparatively with lower   and ARL. This is seen in the achieved mean and ARL in Table 2. 

It is worth noting that the Bootstrap approach like the CUSUM scheme is applicable to counted data. When we 

apply the approach to the data in Osanaiye and Talabi (1989). See Appendix II. For  we assumed 

that  F to be a standard normal distribution and the allowance constants , ,  

which is optimal for the shifts from  to . 

         We first approximate the distributions of  for  by their empirical 

distributions. Obtained from a preliminary run of 1000 independent bootstrap replications of the sampling 

 from  is performed. That is B = 1000. We also Bootstrap B = 5000 replications of the samples 

with replacement from the data and perform the EWMA and ARL from the resampled data. Below are estimated 

results from the various approaches. 

Table 3: Computed EWMA, and Bootstrap (B=1000 and B=5000) for diabetic disease data. 

Approach 
    

  

EWMA 17.93 18.36 17.5 0.86 7.5 

Bootstrap 

B=1000 

17.9935 18.5854 17.4015 0.5919 4.2631 

Bootstrap 

B=5000 

17.9997 18.1717 17.8276 0.3441 4.2604 

 

Where the acceptable mean level is 18 as n . This means that the local means (classical and the 

Bootstrap are approximately 18). The closest value (17.9997) with B=5000 has the closest value to the target 

value 18. Our proposed Bootstrap approach without the assumption of normality of  F (of the data) as in the 

classical case, perform comparatively with lower   and ARL.  This is seen in the achieved  mean and ARL in 

Table 3. We achieved at B=5000, ARL = 0.3441 which is even smaller than the classical EWMA. This has an 

obvious implication for in-control and out-off control decision. This approach do not require prior information 

about both the  and . Consequently, it is robust to distributional assumptions. 

 

V. CONCLUSION 
          We have presented the nonparametric bootstrap approach to obtain control limits which depend on the 

distribution of resampling with replacement of the original data and computing of vital statistics. This method 

does not use the classical assumption in obtaining these results. It has reduce variance estimates and estimate 

comparatively the mean and ARL of the data set to the classical case.  It does not require prior information 

about both the F and G. Consequently, it is robust to distributional assumptions. 

The general picture that emerges from the above results is that, if both F and G are normal, then the 

conventional classical method is a good performer. 
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APPENDIX I 
Table 1: Recorded Brown bean data grown under controlled conditions  

for a period of 10 weeks after germination. 

Week 2 3 4 5 6 7 8 9 10 

Height 20 31 48 63 75 88 101 112 120 

Source: Attwood and Dyer (1995, P.161). 

 

APPENDIX II 

Table 2: The diabetic disease data in Osanaiye and Talabi (1989). 

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

1974 20 23 16 19 23 16 22 12 9 17 20 18 

1975 2 8 8 23 14 25 16 25 7 2 3 13 

1976 20 18 30 17 23 21 14 22 18 18 13 27 

1977 25 20 31 22 15 26 21 23 14 13 58 15 

1978 29 27 25 10 17 17 30 22 14 15 14 14 

1979 24 14 19 9 11 7 19 8 19 22 11 22 

1980 25 22 19 23 17 17 10 23 24 15 41 16 

1981 15 7 10 26 9 17 23 22 30 32 22 27 

1982 25 20 35 17 19 19 27 29 11 23 25 16 

1983 24 20 19 12 16 10 9 16 7 9 18 9 

1984 18 17 14 14 19 23 12 20 7 17 9 14 

1985 18 2 6 18 14 17 22 12 18 13 6 18 

1986 21 17           

 


